Optimized neural coding? Control mechanisms in large cortical networks implemented by connectivity changes.

نویسندگان

  • Katy A Cross
  • Marco Iacoboni
چکیده

Using functional magnetic resonance imaging, we show that a distributed fronto-parietal visuomotor integration network is recruited to overcome automatic responses to both biological and nonbiological cues. Activity levels in these areas are similar for both cue types. The functional connectivity of this network, however, reveals differential coupling with thalamus and precuneus (biological cues) and extrastriate cortex (nonbiological cues). This suggests that a set of cortical areas equally activated in two tasks may accomplish task goals differently depending on their network interactions. This supports models of brain organization that emphasize efficient coding through changing patterns of integration between regions of specialized function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Changes in Effective Connectivity Network Patterns in Drug Abusers, Treated With Different Methods

Introduction: Various treatment methods for drug abusers will result in different success rates. This is partly due to different neural assumptions and partly due to various rate of relapse in abusers because of different circumstances. Investigating the brain activation networks of treated subjects can reveal the hidden mechanisms of the therapeutic methods. Methods: We studied three groups o...

متن کامل

Prediction of Gain in LD-CELP Using Hybrid Genetic/PSO-Neural Models

In this paper, the gain in LD-CELP speech coding algorithm is predicted using three neural models, that are equipped by genetic and particle swarm optimization (PSO) algorithms to optimize the structure and parameters of neural networks. Elman, multi-layer perceptron (MLP) and fuzzy ARTMAP are the candidate neural models. The optimized number of nodes in the first and second hidden layers of El...

متن کامل

Prediction of Gain in LD-CELP Using Hybrid Genetic/PSO-Neural Models

In this paper, the gain in LD-CELP speech coding algorithm is predicted using three neural models, that are equipped by genetic and particle swarm optimization (PSO) algorithms to optimize the structure and parameters of neural networks. Elman, multi-layer perceptron (MLP) and fuzzy ARTMAP are the candidate neural models. The optimized number of nodes in the first and second hidden layers of El...

متن کامل

Anisotropic connectivity implements motion-based prediction in a spiking neural network

Predictive coding hypothesizes that the brain explicitly infers upcoming sensory input to establish a coherent representation of the world. Although it is becoming generally accepted, it is not clear on which level spiking neural networks may implement predictive coding and what function their connectivity may have. We present a network model of conductance-based integrate-and-fire neurons insp...

متن کامل

Dynamical Neural Networks: modeling low-level vision at short latencies

Our goal is to understand the dynamics of neural computations in low-level vision. We study how the substrate of this system, that is local biochemical neural processes, could combine to give rise to an efficient and global perception. We will study these neural computations at different scales from the single-cell to the whole visual system to infer generic aspects of the underlying neural cod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human brain mapping

دوره 34 1  شماره 

صفحات  -

تاریخ انتشار 2013